

Reference Triangles

Solve the triangle [may not be drawn to scale assume typical units for length]:

Solution:

Notice, this proposition is typical, three items are given; the right angle, the 34 angle, and the hypothenuse side, while three items are missing; sides a, b, and angle β .

It should be noted that the angle β is relatively easy to determine $\beta + 34^{\circ} = 90^{\circ}$ Therefore, $\beta = 56^{\circ}$.

Now, we solve for b, the side opposite of the 34° angle. Since we know the hypothenuse is 23 units, and we want to know the sine function describes this ratio, $\sin 34^{\circ} \approx 0.559$, similarly to solve for a we use the cosine ratio, $\cos 34^{\circ} \approx 0.829$. Thus, we illustrate the ratios on the triangle:

